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Abstract
The Perdew, Burke and Ernzerhof (PBE) generalized gradient approximation
(GGA) is the most popular exchange–correlation energy used in today’s ab initio
studies. The GGA is tested here in relation to the intrinsic uncertainty in
choosing the degree of localization of the exchange–correlation hole (the κ-
coefficient in the spin-polarized enhancement factor). The proposed and most
commonly used value of κ = 0.804 (best suited for atoms and molecules)
works well for some solids but should be modified in many cases in order
to predict lattice parameters in good agreement with experiments. The effect
on the structural and magnetic properties of 3d, 4d and 5d metals including
the structural phase order of Fe is examined using two different state-of-the-
art ab initio implementations of density functional theory: the full-potential
linearized muffin-tin orbital and full-potential linearized augmented-plane-
wave methods. This study gives examples for the case of elemental d metals
of the errors associated with these properties when using the PBE-GGA in
state-of-the-art ab initio electronic structure studies.

1. Introduction

Many problems related to the electronic ground-state properties of solids have been treated
with success within the framework of Kohn–Sham (KS) density functional theory (DFT). A
widely applied approximation, the local density approximation (LDA), is used in most studies.
If the system under study is a magnetic one, the local spin-density approximation (LSDA)
must be used. However, the LSDA was shown to fail in the treatment of transition metals: the
prediction of the ground state in Fe is wrong; naturally Fe is bcc and ferromagnetic (FM) while
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the calculations give the fcc non-magnetic (NM) structure as a more stable one. The inclusion
of the GGA in the calculations was shown to lead to correct prediction of the structural phase
order of Fe.

Within the KS density functional theory, only the exchange–correlation energy Exc =
Ex + Ec is approximated. Exc is a functional of the electron spin densities and can be
expressed for slowly varying densities as volume integrals of n times ε

unif
xc in the LSDA

case and f (n↑, n↓,∇n↑,∇n↓) for the GGA case. The exchange–correlation energy of a
uniform electron gas εunifxc (n↑, n↓) and f are parametrized in the case of practical calculations.
Although ε

unif
xc is very well established, the best choice of f remains under debate.

Perdew, Burke and Ernzerhof [1] (PBE) have presented a derivation of a simplified
GGA which improves upon a previous version (PW91) [2] in several respects. On accurate
description of the linear response of the uniform gas, it behaves correctly under uniform
scaling and the potential that it gives is much smoother. The correct features of the LSDA
are retained by the new approximation, which combines them with the most energetically
important properties of gradient-corrected non-locality. The atomization energies of small
molecules calculated in the original PBE paper [1] are very close to those from PW91. This
PBE-GGA represents today’s most popularly used GGA exchange–correlation energy.

In the PBE formulation, the degree of localization of the exchange–correlation hole, which
is directly related to the value of the coefficient κ in the spin-polarized enhancement factor
Fx(s), remains uncertain. PBE proposed in the original work

Fx(s) = 1 + κ − κ/(1 + µs2/κ)

which satisfied the inequality Fx � 1.804 with κ = 0.804 and the value of µ = 0.21951.
Reducing the value of κ = 0.804 would worsen most atomic and molecular results, but could
improve results for the solid state.

It is well known that κ was determined by a fit to atomic exchange energies of real
gases. Different values have been proposed for κ: 0.967 and 0.804 are due to Becke [3] and
Perdew, Burke and Ernzerhof [1] respectively, both obtained for non-magnetic systems. This
parameter ensures that the Lieb–Oxford [4] bound is satisfied for all possible densities. In
recent work, Zhang and Yang [5] have proposed a new value for κ of 1.245; it was obtained by
relaxing the Lieb–Oxford bound and making a new fit of κ , which improves significantly the
values obtained for atomic total energies and molecule atomization energies with the original
PBE. The parameter κ controls the large-gradient limit; it is intrinsically non-universal as was
discussed in references [1, 6–8]

Recently, several studies related to the PBE-GGA functional have been performed for
transition metals [8], s–p materials [9], pressure-induced phase transitions in solid Si, SiO2

and Fe [10], chemisorption energetics of atoms and molecules on transition metal surfaces [11]
and the effect on the structural instabilities, and there has been a study of zone-centre phonons
in ferroelectric perovskites with a modification of the κ-value (and hence the localization of
the exchange–correlation hole) [12].

Since the PBE-GGA represents the most common GGA used in today’s ab initio electronic
structure implementations, it has become important to establish the error bar associated with
some calculated ground-state properties. In the present study the ground-state properties
(structural and magnetic) of 3d, 4d and 5d metals are studied with two different state-of-the-art
ab initio implementations (FP-LMTO and FP-LAPW). Here we test the PBE proposal of the
GGA for the exchange–correlation energy within DFT in relation to the intrinsic uncertainty
in choosing the κ-coefficient and also compare to LSDA predictions. We investigate the effect
of the κ-value on the equilibrium volume, bulk moduli, magnetic moment and structural phase
order of Fe (bcc NM, bcc FM and fcc NM).
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2. Computational details

The studies were performed within the LSDA and the PBE-GGA to DFT theory, using two
different state-of-the-art implementations: the FP-LMTO and FP-LAPW methods. In these
methods no shape approximation for either the potential or the electronic charge density is
made. For the FP-LAPW method we use the WIEN97 implementation [13] and for the FP-
LMTO method we use that of Methfessel and Schilfgaarde [14]. The crystal is divided into
non-overlapping muffin-tin (MT) spheres centred on each atomic position and the interstitial
region. All electrons are treated self-consistently—the core fully relativistically in the FP-
LAPW method and semi-relativistically in the FP-LMTO method. The valence electrons
are treated semi-relativistically in both cases. The spheres are used for the definition of the
basis set. Inside the spheres the basis functions are represented by products of spherical
harmonics and radial solutions of the scalar relativistic Dirac equations. These functions are
matched onto Hankel functions (FP-LMTO) or plane waves (FP-LAPW) in the interstitial
region. The crystalline charge density is evaluated exactly within muffin-tin spheres. In the
FP-LMTO implementation an interpolation scheme is used in the interstitial region. Hankel
functions with three different characteristic decay constants [14] were used to achieve accurate
calculations of the total energies. An important feature in both schemes is the inclusion of
the local orbitals (LO) in the basis, improving upon the linearization and making possible a
consistent treatment of the semicore and valence states in one energy window, hence ensuring
proper orthogonality [15]. This is crucial for making the results independent of the choice of
space partitioning in spheres and interstitials. Many of the calculations were cross-checked by
using both methods; we obtained nearly identical results when the calculations were carried out
to full convergence. Brillouin zone integrations were performed using the tetrahedron method
with meshes sufficiently dense to achieve total-energy self-consistency better than 10−6 Ryd.

3. Results

Figure 1 presents theoretical equilibrium volumes in units of V/V0, where V0 is the cor-
responding experimental value, for most of the 3d, 4d and 5d metals when the value of κ in
the PBE-GGA functional is decreased from 0.90 to ∼0.3. In the case of 3d metals a variation
of κ from 0.804 to 0.45 induced equilibrium volume changes of up to 5%. The optimum
κ-values for 3d metals are in the range 0.72–0.8 resulting in an error in the minimum of V/V0

of around 2.0%. For the 4d metals, the optimum value of κ is in the range 0.44–0.54 (error
in the minimum of V/V0 around 2%). This becomes more extreme for the 5d metals, with κ

required to be in the range 0.34–0.46 to reproduce the experimental equilibrium volume within
the 2% error bar.

Our results for the magnetic metals Fe, Co and Ni obtained using the PBE-GGA (with
κ = 0.804) and the LSDA are summarized in tables 1, 2 and 3. Figure 2 shows the energy
versus volume curves for different structural and magnetic phases of Fe. We have added
for comparison results from recent calculations which used the LMTO-GGA [16] and LAPW-
GGA [10,17,18]. Table 1 shows the calculated equilibrium lattice parameters (a) and magnetic
moments (M). In the Fe case, for example, the overall differences between our theoretical PBE-
GGA and measured values are less than 1.3% and the bulk moduli are overestimated by 15% in
the worst case. In all cases, B0 and B ′

0 are calculated at the corresponding energy minima using
a fit to Murnaghan’s equation of state [23]. As can be seen, PBE-GGA predictions are much
better than those obtained using the LSDA, where for example the bcc Fe calculated lattice
constant is underestimated by 3.7%. Our results from FP-LAPW and FP-LMTO calculations
are close.
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Figure 1. Theoretical equilibrium volumes in units of
V/V0 (V0: the experimental volume) for most of the 3d,
4d and 5d metals as functions of κ .

In particular, we give examples of details of the convergence of our results for the LAPW
calculation of the Fe (bcc) FM phase. We carefully checked that with the use of a k-mesh of
10 000 k-points in the Brillouin zone (286 in the irreducible wedge) and with a large plane-
wave cut-off of RMTKMAX = 9.0, convergence was achieved. In the case where the GGA was
used, a cut-off of 25 Ryd was needed for the plane-wave expansion of the charge and potential.
Since we chose a muffin-tin radius of RMT = 2 au we even had to include Fe 3s in the valence
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Table 1. Calculated structural and magnetic properties of Fe (bcc FM), Co (fcc FM) and Ni (fcc
FM) resulting from our FP-LMTO ([A]) and FP-LAPW ([B] and [C]) calculations within the PBE-
GGA approximation. The values obtained from the LSDA are in parentheses. The present work is
compared with FP-LAPW and LMTO calculations which used the GGA-PW91 approximation.

Metal Method a (Bohr) M (µB ) B (Mbar) B ′
0

Fe bcc LMTO [16] (5.27) 5.46 (2.28) 2.44 (2.66) 2.15
LAPW [17] (5.22) 5.44 (2.01) 2.32 (2.26) 1.69
LAPW [10] (5.20) 5.35 (2.60) 2.00 (4.6) 4.5
LAPW [18] (5.21) 5.36 (2.45) 1.89 (4.6) 4.9
[A] (5.22) 5.38 (2.03) 2.18 (2.44) 1.70 (4.7) 4.3
[B] (5.20) 5.35 2.17 (2.60) 1.98 (4.6) 4.5
[C] (5.20) 5.36 (2.01) 2.17 (2.48) 1.82 (4.7) 4.9
Experiment 5.417 [19] 2.22 [20] 1.72 [19] 5.0 [21]

Co fcc LMTO [16] (6.54) 6.70 (1.62) 1.68 (2.55) 2.44
LAPW [17] (6.51) 6.69 (1.49) 1.66 (2.37) 2.04
[A] (6.50) 6.70 (1.54) 1.66 (2.56) 1.96
Experiment [20] 6.70 1.72 1.91

Ni fcc LMTO [16] (6.53) 6.70 (0.62) 0.67 (2.68) 2.53
LAPW [17] (6.50) 6.68 (0.60) 0.64 (2.39) 1.92
[A] (6.49) 6.59 (0.58) 0.61 (2.57) 1.89
Experiment [20] 6.65 0.61 1.86
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Figure 2. Curves for total energy versus volume for different magnetic and structural phases of
Fe. The energies are relative to the minimum of the bcc FM curve. The curves presented here were
calculated with the FP-LAPW. The dotted curve corresponds to the bcc (NM), the dashed curve to
the fcc (NM) and the solid line to the bcc (FM) structure.

panel, using appropriate local orbitals in the basis set. Still, as in any linearized method, the
choice of linearization energies El is to be assessed—in particular, those associated with the
3d band. To test the sensitivity to the choice of El , two sets of calculations for the equation
of state were performed. The results are shown in table 1, denoted by [B] and [C]. These
calculations were almost identical (as described above), only differing as regards the selection
of the linearization energy El . For case [B] the value of El was chosen close to the position
of the Fermi energy for the V/V0 = 1.0 case and is close to the 3d band centre for the same



9468 E L Peltzer y Blancá et al

volume. For the second ([C]) case, two linearization energies were used: one using a LO at
0.3 Ryd below the Fermi energy for V/V0 = 1.0 and a second one 0.1 Ryd above it. These
values were then kept fixed for all volumes used for the calculation of the E(V ) curve. The
total energies were calculated and fitted in the range 0.75V0 to 1.20V0. The [B] and [C] results
set the error bars associated with an ab initio calculation using the FP-LAPW method: smaller
than 0.2% for the lattice constant and magnetic moment, 8% for the bulk moduli and 9% for B ′

0.
It is well established that the LSDA fails to give a correct prediction for the bcc

ferromagnetic (FM) ground state of Fe. Different GGAs overcome this. The prediction of
the PBE-GGA (κ = 0.804) is shown in figure 2. The three curves for the LAPW study were
obtained with the same degree of convergence as described for case [C] in table 1. Energy–
volume curves for bcc Fe (FM), bcc Fe non-magnetic (NM) and fcc Fe (NM) establish that the
correct order is predicted. Table 2 shows the differences between the minima of the different
curves detailed in figure 2. These are compared to those from FP-LAPW [10,17] and a recent
pseudopotential study [22]. All energy differences are referred to bcc Fe (FM).

Table 2. Energy differences between the minima of the energy–volume curves. Our calculations
with the FP-LMTO ([A]) and the FP-LAPW ([C], GGA-PBE) value: κ = 0.804. �E denotes
differences between fcc NM and bcc FM; �E′ denotes differences between bcc NM and bcc FM.
vBH, CA, HL stand for von Barth–Hedin, Ceperley–Alder and Hedin–Lunqvist respectively.

Metal Method EXC �E (mRyd) �E′ (mRyd)

Fe LAPW [17] LSDA(vBH) −4.4 20.2
GGA-PW91 14.9 38.0

Pseudopotential [22] LSDA(CA) −2.6 22.4

[A] LSDA(HL) −3.76 21.95
GGA-PBE 13.53 36.55

[C] GGA-PBE 11.50 34.84

LAPW [10] LSDA −5.1
GGA-PBE 9.22

When κ , i.e. the extent of the XC hole, is modified, all three curves in figure 2 (Fe
case) show a change in the value at which the minimum occurs (Vmin/V0) and also a change
in the curvature (bulk moduli) at these minima. Table 3 shows that a value of κ ∼ 1.0 is
needed to have the calculation of the equilibrium lattice parameter completely agree with the
experimental value. It also shows that the right ordering of phases in Fe is not modified and that
the relative changes in the curves and curvatures as the κ-value changes are small (although
still appreciable).

In table 3, we have included the values of the cell parameter, magnetic moment and
bulk moduli obtained with the FP-LAPW method for different κ-values, and it is possible to
observe that as both groups of values move toward higher values of κ they become closer to
the experimental values. We can see in figure 1 that Co shows the same behaviour as iron;
theoretical values are reached for values of κ higher than 0.804. In the case of Ni, the κ-value
is lower than that (0.804) for which we obtained theoretical values close to experimental ones.
These three 3d magnetic elements show a trend—that is, the smaller the magnetic moment,
the smaller the value of κ . As it is possible to see in the work of Perdew et al [6], a sharp radial
cut-off corresponds to κ = 0.804, while a more diffuse cut-off leads to a smaller value of κ ,
as happens in the case of Ni. The opposite is true for the cases of Fe and Co.
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Table 3. The minimum of the E(V ) curve (lattice parameter) expressed as Vmin/V0 and the
associated bulk modulus for bcc Fe (FM), energy differences between the minima of the energy–
volume curves and the magnetic moment obtained using different values of κ and the FP-LMTO
method (GGA-PBE). �E and �E′ are defined as in the previous table. Values in parentheses were
obtained with the FP-LAPW method.

Element κ �E (mRyd) �E′ (mRyd) Vmin/V0 B (Mbar) M (µB )

Fe 0.804 13.53 36.55 0.972 (0.97) 1.7 (1.82) 2.18 (2.17)
0.9 14.72 37.61 0.981 (0.97) 1.92 (1.73) 2.19 (2.22)
1.0 15.77 38.49 0.984 (0.974) 1.72 (1.65) 2.20 (2.24)
1.1 16.68 39.30 0.990 (0.98) 1.94 (1.60) 2.21 (2.26)

Experiment 1.000 1.72 2.22

Finally we give results for the noble metals Cu, Ag and Au. They all belong to the same
column in the periodic table, have the same fcc crystal structure and are non-magnetic. In
table 4, results are shown for the dependence of the equilibrium lattice parameter (Vmin/V0)
and the bulk moduli at this minimum on the choice of κ-value in the PBE-GGA. All of these
calculations were carried out using the FP-LAPW implementation.

Table 4. The dependence of lattice parameter (expressed as Vmin/V0) and bulk modulus as the
extent of the XC hole varies. The results shown here were obtained from FP-LAPW calculations and
the PBE-GGA. The experimental V0 are: V0Cu = 79.37 au, V0Ag = 115.43 au, V0Au = 114.58 au.

Element κ (V/V0)min B (Mbar) Bexpt [20] (Mbar)

Cu 0.4 0.967 1.67 1.37
0.5 0.983 1.59
0.6 0.995 1.52
0.7 1.006 1.47
0.804 1.015 1.42
0.9 1.022 1.39

Ag 0.4 1.001 1.203 1.007
0.5 1.001 1.07
0.6 1.017 0.97
0.7 1.032 0.89
0.804 1.045 0.82
0.9 1.055 0.77

Au 0.4 1.025 1.78 1.732
0.5 1.040 1.63
0.6 1.051 1.56
0.7 1.059 1.50
0.804 1.067 1.43
0.9 1.073 1.39

As was already shown in figure 1, the reduction of κ required to achieve a correct value
of Vmin/V0 of 1 increases as we move from 3d Cu to 4d Ag and 5d Au. For example κ � 0.4
is needed for the latter element.

4. Conclusions

Ground-state structural and magnetic predictions from LSDA and PBE-GGA calculations have
been made for d metals. The degree of localization of the XC hole is determined within the
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PBE-GGA formalism by the coefficient κ . Studies of the effect of all calculated properties on
κ are detailed. Two different implementations for solving the Kohn–Sham equations of DF
theory were used: FP-LMTO and FP-LAPW. The two methods give nearly identical results,
thus serving in our studies as a check on the PBE-GGA functional.

The usual underestimation of the LSDA for equilibrium volumes is here also obtained in
complete accord with other theoretical state-of-the-art studies.

Results for the PBE-GGA vary as κ is varied. The structural minima for the 3d metals are
best described with κ ∼ 0.8 (the original value proposed by Perdew et al [1]). The 4d metals
need a reduced value, κ ∼ 0.5, and the 5d metals a smaller value still, ∼0.3. In the unusual
case of magnetic Fe, an increased κ-value is needed.

The need for varying κ from one system to another reflects the fact that the localization
of the exchange–correlation hole is system dependent. However, other properties like bulk
moduli, magnetic moment (when appropriate) and even the phase ordering do not depend
sensitively on the choice of κ-value. This would permit an ad hoc correction of the theoretical
equilibrium volume by selecting the appropriate value of κ for each particular system. We
have thus examined the error bars associated with the calculation of structural and magnetic
properties of d elemental metals. This study should thus be useful, since the PBE-GGA is the
most popular GGA in state-of-the-art electronic structure studies.

Our work indicates that the physics of ‘correlation hole size changes’ and the proposed
exchange–correlation potentials are not ‘perfect’, and that the ‘ab initio’ methods are not really
ab initio, and require constant parameter fitting. We investigated the applicability and physical
meaning of the ‘optimum’ parameters used for this particular XC potential.
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